A role for endogenous electric fields in wound healing.
نویسنده
چکیده
This review focuses on the experimental evidence supporting a role for endogenous electric fields in wound healing in vertebrates. Most wounds involve the disruption of epithelial layers composing the epidermis or surrounding organs in the body. These epithelia generate a steady voltage across themselves that will drive an injury current out of the wounded region, generating a lateral electric field that has been measured in four different cases to be 40-200 mV/mm. Many epithelial cells, including human keratinocytes, have the ability to detect electric fields of this magnitude and respond with directed migration. Their response typically requires Ca2+ influx, the presence of specific growth factors and intracellular kinase activity. Protein kinase C is required by neural crest cells and cAMP-dependent protein kinase is used in keratinocytes while mitogen-activated protein kinase is required by corneal epithelial cells. Several recent experiments support a role for electric fields in the stimulation of wound healing in the developing frog neurula, adult newt skin and adult mammalian cornea. Some experiments indicate that when the electric field is removed the wound healing rate is 25% slower. In addition, nearly every clinical trial using electric fields to stimulate healing in mammalian wounds reports a significant increase in the rate of healing from 13 to 50%. However, these trials have utilized many different field strengths and polarities, so much work is needed to optimize this approach for the treatment of mammalian wounds.
منابع مشابه
Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo.
Biological roles for naturally occurring, extracellular physiological electric fields have been proposed over the past century. However, in the molecular era, many biologists presume that electric fields have little physiological relevance because there has been no unequivocal demonstration of their importance at the single-cell level in vivo. We have used an in vivo rat corneal model, which ge...
متن کاملMelanocytes do not migrate directionally in physiological DC electric fields.
Wounding skin generates an endogenous electric field of 100-200 mV/mm in the immediate vicinity of the wound. When keratinocytes are exposed to direct current electric fields of this magnitude, they exhibit galvanotaxis, or directional migration toward the cathode, suggesting that wound-generated electric fields provide migrational cues that contribute to wound healing. Because melanocytes must...
متن کاملSynchronization Modulation Increases Transepithelial Potentials in MDCK Monolayers through Na/K Pumps
Transepithelial potential (TEP) is the voltage across a polarized epithelium. In epithelia that have active transport functions, the force for transmembrane flux of an ion is dictated by the electrochemical gradient in which TEP plays an essential role. In epithelial injury, disruption of the epithelial barrier collapses the TEP at the wound edge, resulting in the establishment of an endogenous...
متن کاملLymphocyte electrotaxis in vitro and in vivo.
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e., electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during w...
متن کاملThe Electrical Response to Injury: Molecular Mechanisms and Wound Healing.
Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current topics in developmental biology
دوره 58 شماره
صفحات -
تاریخ انتشار 2003